Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Growth and optical properties of InAs/GaAs quantum dot structures

Identifieur interne : 000475 ( Russie/Analysis ); précédent : 000474; suivant : 000476

Growth and optical properties of InAs/GaAs quantum dot structures

Auteurs : RBID : Pascal:05-0035391

Descripteurs français

English descriptors

Abstract

The growth and optical properties of InAs/GaAs(0 0 1) quantum dot (QD) structures depending on the deposition parameters are investigated. The epitaxial layers were grown in a Riber 32P MBE system and studied by atomic force microscopy and photoluminescence (PL). For a single QD with 2.7 monolayers (ML) of InAs deposited at a rate of 0.25 ML/s the dots have a dome shape and with increasing substrate temperature Ts from 460 to 520 °C their surface density decreases from 2 x 1010 to 1.2 x 1010cm-2 and the mean lateral size increases from 40 to 70 nm, the dots height does not exceed 8 nm. At low beam equivalent pressure of As (below 3 x 10-6Torr) and higher Ts the segregation of In occurs. The multiple stacked QD structures (2.7 or 4 ML of InAs with 4 ML GaAs spacer) with the more uniform morphology in the upper layers providing the intense and narrow PL spectrum are formed at Ts = 490 °C and the flux ratio As4/In = 25. The high-quality modulated Si-doped InAs/GaAs QDs-based multilayer heterostructures N-AlGaAs/GaAs/InAs/GaAs/InAs/GaAs/... /GaAs with the two-dimensional (2D) electron gas of high-density were grown and studied for the first time and in their low-temperature PL spectra the features associated with quantum confinement effects were observed.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:05-0035391

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Growth and optical properties of InAs/GaAs quantum dot structures</title>
<author>
<name sortKey="Trofimov, Vladimir I" uniqKey="Trofimov V">Vladimir I. Trofimov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Radioengineering & Electronics of RAS, 11/7 Mokhovaya Street</s1>
<s2>125009 Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name>HEE SEOK PARK</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Korea Signal, 39-1, Hawelgok-dong, Sungbook-Ku, Venture town 107, Korea Institute of Science & Technology</s1>
<s2>Seoul</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kim, Jong Il" uniqKey="Kim J">Jong-Il Kim</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>School of Information Technology and Engineering, Korea University of Technology and Education</s1>
<s2>Chung Nam-Do 330-708</s2>
<s3>KOR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Chung Nam-Do 330-708</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">05-0035391</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 05-0035391 INIST</idno>
<idno type="RBID">Pascal:05-0035391</idno>
<idno type="wicri:Area/Main/Corpus">00AA03</idno>
<idno type="wicri:Area/Main/Repository">00B595</idno>
<idno type="wicri:Area/Russie/Extraction">000475</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0169-4332</idno>
<title level="j" type="abbreviated">Appl. surf. sci.</title>
<title level="j" type="main">Applied surface science</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium arsenides</term>
<term>Atomic force microscopy</term>
<term>Binary compounds</term>
<term>Doped materials</term>
<term>Electron gas</term>
<term>Epitaxial layers</term>
<term>Film growth</term>
<term>Gallium arsenides</term>
<term>Heterostructures</term>
<term>Indium arsenides</term>
<term>Inorganic compounds</term>
<term>Molecular beam epitaxy</term>
<term>Multilayers</term>
<term>Photoluminescence</term>
<term>Quantum dots</term>
<term>Segregation</term>
<term>Semiconductor materials</term>
<term>Silicon</term>
<term>Temperature effects</term>
<term>Ternary compounds</term>
<term>Two-dimensional systems</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Point quantique</term>
<term>Couche épitaxique</term>
<term>Croissance film</term>
<term>Epitaxie jet moléculaire</term>
<term>Microscopie force atomique</term>
<term>Photoluminescence</term>
<term>Effet température</term>
<term>Ségrégation</term>
<term>Matériau dopé</term>
<term>Multicouche</term>
<term>Hétérostructure</term>
<term>Système 2 dimensions</term>
<term>Gaz électron</term>
<term>Indium arséniure</term>
<term>Semiconducteur</term>
<term>Composé binaire</term>
<term>Gallium arséniure</term>
<term>Silicium</term>
<term>Aluminium arséniure</term>
<term>Composé ternaire</term>
<term>As In</term>
<term>InAs</term>
<term>As Ga</term>
<term>GaAs</term>
<term>Si</term>
<term>Al As Ga</term>
<term>AlGaAs</term>
<term>Composé minéral</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Composé minéral</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The growth and optical properties of InAs/GaAs(0 0 1) quantum dot (QD) structures depending on the deposition parameters are investigated. The epitaxial layers were grown in a Riber 32P MBE system and studied by atomic force microscopy and photoluminescence (PL). For a single QD with 2.7 monolayers (ML) of InAs deposited at a rate of 0.25 ML/s the dots have a dome shape and with increasing substrate temperature T
<sub>s</sub>
from 460 to 520 °C their surface density decreases from 2 x 10
<sup>10</sup>
to 1.2 x 10
<sup>10</sup>
cm
<sup>-2</sup>
and the mean lateral size increases from 40 to 70 nm, the dots height does not exceed 8 nm. At low beam equivalent pressure of As (below 3 x 10
<sup>-6</sup>
Torr) and higher T
<sub>s</sub>
the segregation of In occurs. The multiple stacked QD structures (2.7 or 4 ML of InAs with 4 ML GaAs spacer) with the more uniform morphology in the upper layers providing the intense and narrow PL spectrum are formed at T
<sub>s</sub>
= 490 °C and the flux ratio As
<sub>4</sub>
/In = 25. The high-quality modulated Si-doped InAs/GaAs QDs-based multilayer heterostructures N-AlGaAs/GaAs/InAs/GaAs/InAs/GaAs/... /GaAs with the two-dimensional (2D) electron gas of high-density were grown and studied for the first time and in their low-temperature PL spectra the features associated with quantum confinement effects were observed.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0169-4332</s0>
</fA01>
<fA03 i2="1">
<s0>Appl. surf. sci.</s0>
</fA03>
<fA05>
<s2>226</s2>
</fA05>
<fA06>
<s2>1-3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Growth and optical properties of InAs/GaAs quantum dot structures</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Nanostructures from clusters</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>TROFIMOV (Vladimir I.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HEE SEOK PARK</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KIM (Jong-Il)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>PEREZ (Alain)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>PUGLISI (Orazio)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Institute of Radioengineering & Electronics of RAS, 11/7 Mokhovaya Street</s1>
<s2>125009 Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Korea Signal, 39-1, Hawelgok-dong, Sungbook-Ku, Venture town 107, Korea Institute of Science & Technology</s1>
<s2>Seoul</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>School of Information Technology and Engineering, Korea University of Technology and Education</s1>
<s2>Chung Nam-Do 330-708</s2>
<s3>KOR</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Laboratoire de Physique de la Matière Condensée et Nanostructures, Université Claude Bernard Lyon 1 and CNRS</s1>
<s2>69622 Villeurbanne</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Dipartimento di Scienze Chimiche dell'Università di Catania</s1>
<s2>95125 Catania</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>European Materials Research Society</s1>
<s2>Strasbourg</s2>
<s3>FRA</s3>
<s9>patr.</s9>
</fA18>
<fA20>
<s1>45-51</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16002</s2>
<s5>354000117010760090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>19 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0035391</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied surface science</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The growth and optical properties of InAs/GaAs(0 0 1) quantum dot (QD) structures depending on the deposition parameters are investigated. The epitaxial layers were grown in a Riber 32P MBE system and studied by atomic force microscopy and photoluminescence (PL). For a single QD with 2.7 monolayers (ML) of InAs deposited at a rate of 0.25 ML/s the dots have a dome shape and with increasing substrate temperature T
<sub>s</sub>
from 460 to 520 °C their surface density decreases from 2 x 10
<sup>10</sup>
to 1.2 x 10
<sup>10</sup>
cm
<sup>-2</sup>
and the mean lateral size increases from 40 to 70 nm, the dots height does not exceed 8 nm. At low beam equivalent pressure of As (below 3 x 10
<sup>-6</sup>
Torr) and higher T
<sub>s</sub>
the segregation of In occurs. The multiple stacked QD structures (2.7 or 4 ML of InAs with 4 ML GaAs spacer) with the more uniform morphology in the upper layers providing the intense and narrow PL spectrum are formed at T
<sub>s</sub>
= 490 °C and the flux ratio As
<sub>4</sub>
/In = 25. The high-quality modulated Si-doped InAs/GaAs QDs-based multilayer heterostructures N-AlGaAs/GaAs/InAs/GaAs/InAs/GaAs/... /GaAs with the two-dimensional (2D) electron gas of high-density were grown and studied for the first time and in their low-temperature PL spectra the features associated with quantum confinement effects were observed.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Couche épitaxique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Epitaxial layers</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Croissance film</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Film growth</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Effet température</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Temperature effects</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Ségrégation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Segregation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Multicouche</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Multilayers</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Système 2 dimensions</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Two-dimensional systems</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Gaz électron</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Electron gas</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Indium arséniure</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Aluminium arséniure</s0>
<s2>NK</s2>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Aluminium arsenides</s0>
<s2>NK</s2>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>As In</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>33</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>As Ga</s0>
<s4>INC</s4>
<s5>34</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>35</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Si</s0>
<s4>INC</s4>
<s5>36</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Al As Ga</s0>
<s4>INC</s4>
<s5>37</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>AlGaAs</s0>
<s4>INC</s4>
<s5>38</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>62</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>62</s5>
</fC03>
<fN21>
<s1>017</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>EMRS 2003-Symposium F</s1>
<s3>Strasbourg FRA</s3>
<s4>2003-06-10</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000475 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000475 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:05-0035391
   |texte=   Growth and optical properties of InAs/GaAs quantum dot structures
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024